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Abstract

In this paper, we compute the constitutive behavior of a ferroelectric ceramic by a plane strain finite element model,
where each element represents a single grain in the polycrystal. The properties of a grain are described by the micro-
scopic model for switching in multidomain single crystals of ferroelectric materials presented by Huber et al. [J. Mech.
Phys. Solids 47 (1999) 1663]. The poling behavior of the polycrystal is obtained by employing the finite element formu-
lation for electromechanical boundary value problems developed by Landis [Int. J. Numer. Meth. Eng. 55 (2002) 613].
In particular, we address the influence of the single grain properties and the interaction between grains, respectively.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Ferroelectric piezoceramics show a twofold hierachical microstructure: The polycrystalline ceramic is
composed of grains, and each grain is subdivided into domains (Jaffe et al., 1971; Lines and Glass,
1977). Within a grain the lattice axes are the same, and a domain is a region where all unit cells have uniform
orientation of their asymmetry. Consequently, this latter feature can only occur if the unit cells possess a
low order of symmetry. In particular, this applies for the ferroelectric phase of piezoceramic materials,
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where the unit cells may have a tetragonal, rhombohedral or orthorombic configuration, to mention but a
few typical possibilities, and, electrically, each unit cell forms a dipole that has a fixed orientation. A do-
main is thus a collection of unit cells all having the same electrical dipole orientation relative to the principal
axis of the asymmetry. Additionally, ferroelectricity is characterized by a specific property: mechanical and
electric loads of sufficient magnitude may change the dipole orientation of unit cells, leading to domain
switching and domain wall motion.
In technical applications of piezoceramics we usually encounter their macroscopic constitutive properties.

For many purposes in engineering it is simultaneously sufficient and efficient to model the macroscopic
behavior directly by a phenomenological method (Chen, 1984; Bassiouny et al., 1988; Bassiouny and
Maugin, 1989; Kamlah and Tsakmakis, 1999; Kamlah and Jiang, 1999; Lynch, 1998; Landis, 2002a;
McMeeking and Landis, 2002; Kessler and Balke, 2001). On the other hand, it is the peculiar microstructure
of piezoceramics, which determines the macroscopic response to loads. Therefore, several efforts have dealt
with the computation of macroscopic properties by microscopic models in order to achieve a more quanti-
tative understanding of the phenomena observed in piezoceramics. One type of model assumes the polycrys-
tal to consist of monodomain grains, the polarization of which switches by a discrete angle if an energetic
switching criterion is met (Hwang et al., 1995, 1998; Michelitsch and Kreher, 1998). Instead of simply aver-
aging the fields over uncoupled grains for the computation of the macroscopic response (Hwang et al., 1995;
Michelitsch and Kreher, 1998), some workers take the interaction among the grains into account by Eshelby
inclusion methods (Hwang et al., 1998) or explicitly by the finite element method (Hwang and McMeeking,
1998a,b; Steinkopff, 1999; Fröhlich, 2001). Another type of model makes use of methods of continuum
micromechanics (Huo and Jiang, 1997, 1998; Chen et al., 1997; Lu et al., 1999; Rödel and Kreher, 2000).
The observation of the equivalence of incremental switching by domain wall motion to incremental slip

on a crystal slip system is the basis of the model for domain switching presented by Huber et al. (1999). The
kinematics of the process due to ‘‘switching systems’’ is developed in analogy to crystal plasticity. Driving
forces for the transformations are derived from the excess of the external work rate over the dissipation due
to domain wall motion and a switching system becomes active if the driving force reaches a critical value. In
this way, the existence of the domain structure and its influence on the grain response is taken into account.
For representation of the rate equations of stress and electric field as a function of the rates of strain and
electric displacement, tangent moduli arising from the switching model are derived for a single crystal.
From this single crystal model, the macroscopic response of the polycrystal is derived approximately by
a self-consistent scheme.
In the present paper we calculate the response of a polycrystalline array from the single crystal model for

domain switching discussed above (Huber et al., 1999) by taking into account the grain to grain interaction
explicitly by the finite element method. Each finite element represents a grain with its individual lattice ori-
entation. While the single crystal model will be summarized and discussed in Section 2, Section 3 is devoted
to the computation of the macroscopic response by a plane strain finite element model. As a special feature
of our work, we make use of the new finite element formulation for electromechanical boundary value
problems presented by Landis (2002b). In contrast to the more common formulation introduced by Allik
and Hughes (1970), where the electric potential is the primary electrical nodal quantity to be solved for, the
new formulation relies on a vector potential for the electric displacement. As a consequence, this approach
yields a positive definite finite element stiffess matrix and better convergence properties for iterative solution
schemes of nonlinear problems.
2. Single crystal model for domain switching

In this section, we summarize the formulation of the single crystal model of Huber et al. (1999), followed
by a discussion of the single crystal model response to poling processes.
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2.1. Model formulation

We start with the basic assumption that the strain eij (small deformation theory) and the electric dis-

placement Di can be decomposed additively into linear (superscript L) and remanent (superscript R)
parts:
eij ¼ eLij þ eRij; ð1Þ

Di ¼ DL
i þ PR

i ; ð2Þ

where PR

i is known as the remanent polarization. In their physical interpretation, remanent strain eRij and
remanent polarization result after complete unloading in terms of stress rij and electric field Ei. Here we
use the classical relations of linear piezoelectricity
eLij ¼ eij � eRij ¼ sEijklrkl þ dkijEk; ð3Þ

DL
i ¼ Di � PR

i ¼ diklrkl þ jr
ikEk; ð4Þ
where sEijkl, dijk, and jr
ik are the tensors of elastic compliances, piezoelectric constants and dielectric permitti-

vities, respectively.
The model for domain evolution in the crystal is based on three assumptions:

(i) The stress rij and the electric field Ei are uniform in the crystal, i.e. the same in each domain.
(ii) The crystal has a volume fraction cI of each domain type I. We restrict ourselves to purely tetragonal
crystals, i.e. a total of M = 6 variants.

(iii) Both the linear and the remanent parts of the strain and the electric displacement are given by the
volume averages over the crystal.

Assumption (i) is an approximation neglecting interactions between domains within a grain. To each
domain belonging to a certain domain type I, linear piezoelectric behavior according to
eLðIÞij ¼ sEðIÞijkl rkl þ dðIÞ
kijEk; ð5Þ

DLðIÞ
i ¼ dðIÞ

iklrkl þ jrðIÞ
ik Ek; ð6Þ
is associated, where use has been made of assumption (i). The quantities sEðIÞijkl ; d
ðIÞ
ijk , and jrðIÞ

ik are the material
tensors for domain type I and are obtained from an orthogonal transformation from the elementary form
in coordinates aligned with the principal crystal axes.
With respect to strain and polarization, assumptions (ii) and (iii) yield
e�ij ¼
XM
I¼1

cIe�ðIÞij

h i
; � ¼ fL;R; Lþ Rg; ð7Þ

D�
i ¼

XM
I¼1

cID�ðIÞ
i

h i
; � ¼ fL;R; Lþ Rg; ð8Þ
for the linear and remanent parts and thus by Eqs. (1) and (2) also for the sum of both (L + R). As a con-
sequence, we find with the help of Eqs. (3)–(6)
sEijkl ¼
XM
I¼1

cI sEðIÞijkl

h i
; ð9Þ
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dijk ¼
XM
I¼1

cIdðIÞ
ijk

h i
; ð10Þ

jr
ik ¼

XM
I¼1

cIjrðIÞ
ik

h i
: ð11Þ
Each of the M = 6 domain types can transform into any of the remaining variants, giving
N =M(M�1) = 30 transformations or switching types. Each switching type a results in a switching strain
magnitude ca, which is the difference in remanent strain magnitude (measured as a shear strain) between
the two domain types involved, and in a switching polarization magnitude Pa, which is the difference in
remanent polarization. Let _f

a
denote the incremental volume fraction of domains switched from a domain

type J to a domain type I, where a superposed dot indicates the absolute derivative with respect to time t:
_ðÞ ¼ dðÞ=dt. Furthermore, let us introduce theM · N connectivity matrix AIa in the following way: AIa = 1
indicates that the activation of switching system a leads to an increase of volume fraction cI of domain type
I, AIa = �1 indicates a decrease, and AIa = 0 means that activation of switching system a leaves volume
fraction cI unchanged. In their mathematical form, these definitions read as:
_cI ¼
XN
a¼1

AIa _f
a
; I ¼ 1; . . . ;M : ð12Þ
Note that the definitions of N and AIa imply the property _f
a
P 0. Note also that 0 6 cI 6 1. If the switching

model tends to make the system violate these constraints, the relevant switching process is switched off and
the corresponding _f

a
in Eq. (12) and hereunder is set to zero.

The switching increment _f
a
produces an increment of the remanent strain and polarization, respectively.

In the case of the remanent strain, this increment is _f
a
la
ijc

a, where
la
ij ¼

1

2
sai n

a
j þ saj n

a
i

� �
ð13Þ
is the Schmid orientation tensor describing simple shear in direction sai on the plane of unit normal n
a
i and

vice versa. These two vectors sai and na
i are related to the lattice axes and the type of anisotropy of the unit

cell. Similarly, the resulting increment of the remanent polarization reads as _f
a
sai P

a. Finally the rates of
remanent strain and polarization are obtained by superposing the contribution of all active switching
systems:
_eRij ¼
X

a

_f
a
la
ijc

a; ð14Þ

_P
R

i ¼
X

a

_f
a
sai P

a: ð15Þ
The latter equations clearly reveal that the incremental volume fractions _f
a
are the fundamental kine-

matic quantities governing the switching process. The corresponding driving forces are derived as thermo-
dynamically conjugate forces equalling the dissipative work rate, that is the total work rate minus the
recoverably stored work rate:
_wD ¼ _w� _wS ¼ rij _eij þ Ei
_Di � _wS ¼

X
a

½Ga _f
a
 ð16Þ
with the recoverably stored work being given by
wS ¼ 1
2

rije
L
ij þ

1

2
EiDL

i : ð17Þ
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The driving force for switching type a is thus found to be
Ga ¼ la
ijc

a þ 1
2
~ea
ij

� �
rij þ sai P

a þ 1
2
~D

a

i

� �
Ei; ð18Þ
where
~ea
ij ¼

X
I

AIa sEðIÞijkl rkl þ dðIÞ
kijEk

h i
; ð19Þ

~D
a

i ¼
X
I

AIa dðIÞ
iklrkl þ jrðIÞ

ik Ek

h i
: ð20Þ
In the material we are considering, the energy lost is dissipated by the motion of domain walls during
switching and this is equivalent to the dissipation of energy by motion of dislocations that cause shear
on slip systems in dislocation modulated plasticity.
With respect to the evolution equations for the incremental volume fractions _f

a
in dependence on the

driving forces Ga, we modify the formulation of the model compared to Huber et al. (1999) to introduce
rate dependence. We assume
_f
a ¼ Ba Ga

Ga
c

� �n

; ð21Þ
where Ga
c are the critical driving forces, Ba are scaling factors, and n is a ‘‘creep’’ exponent. These power laws

allow for no interaction among switching systems and yield rate dependent evolution equations. In partic-
ular, the scaling factors give rise to a material specific time scale sa = Bat with the property _ðÞ ¼ BadðÞ=dsa.
For the finite element formulation employed in this paper, we need the constitutive model in the form of

differential equations with the rates of stress and electric field as dependent quantities on the left hand side.
Differentiation of Eqs. (5) and (6), use of Eqs. (9)–(15) together with definitions (19) and (20) and finally
inversion yields
_rij ¼ cDijkl _ekl � hkij _Dk � cDijkl
X

a

la
klc

a þ ~ea
kl

� 	
_f
a þ hkij

X
a

sakP
a þ ~D

a

k

h i
_f
a
; ð22Þ

_Ei ¼ �hikl _ekl þ be
ik
_Dk � be

ik

X
a

sakP
a þ ~D

a

k

h i
_f
a þ hikl

X
a

la
klc

a þ ~ea
kl

� 	
_f
a
: ð23Þ
Here, cDijkl is an elastic stiffness tensor, hijk is a piezoelectric tensor, and be
ik is an inverse dielectric permeability

tensor arising from inversion of the forms in Eq. (3) and (4).
2.2. Discussion of the single crystal model response

Next, we will discuss the response of the above single crystal model to a poling electric field for various
possibilities. We assume simplified anisotropy properties for a domain, since with respect to elasticity and
dielectricity, the amount of anisotropy involved in practice is small (Jaffe et al., 1971). The corresponding
tensors are taken to be isotropic (Young�s modulus E(I) = 60.0 GPa, Poisson�s ratio m(I) = 0.37, dielectric
permittivity jr(I) = 0.02 lF/m). Piezoelectricity is transversely isotropic about the direction of spontaneous
polarization (d15 ¼ 2dðIÞ

131 ¼ 5:8� 10�10 m/V, d31 ¼ dðIÞ
311 ¼�2:1� 10�10 m/V, d33 ¼ dðIÞ

333 ¼ 4:5� 10�10 m/V).
The quantities ca and Pa are calculated for 90� and 180� switching from the spontaneous tetragonal axial
strain espon = 0.002 and the spontaneous polarization Pspon = 0.3 C/m2, respectively. Note that the trans-
verse spontaneous strains are �0.001 for the tetragonal unit cell. As a result c90� = 3espon, P 90

� ¼ffiffiffi
2

p
P spon, c180� = 0, P180� = 2Pspon. Concerning the critical driving forces, the relation G90

�

c ¼ G180
�

c =
ffiffiffi
2

p
leads
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to equal critical resolved electric field strengths Ec for 90� and 180� switching systems (Huber et al., 1999).
The choice G90

�

c ¼ 0:6� 106 (VC)/m3 leads to typical values for the coercive field strength Ec on the order of
0:6�

ffiffiffi
2

p
� 0:8 MV/m. A large creep exponent n = 40 has been chosen, with the purpose of coming as close

to ‘‘ideally plastic’’ behavior as possible without running into numerical difficulties. That is, if Ga exceeds Ga
c

only slightly, the switching rate for system a is very high, thereby limiting Ga to values little in excess of Ga
c .

On the other hand, if Ga is just a little below Ga
c , switching system a is sluggish and effectively turned off.

Finally, the scaling factors Ba were taken to be 1.0 s�1 and the loading rate was adjusted correspondingly to
obtain physically realistic results, see Eq. (21).
First, we consider a single crystal with its local lattice axes x01; x

0
2 and x03 oriented in the direction of the

global coordinate axes x1, x2 and x3, respectively. In the initial state, there are equal volume fractions for all
domain orientations: cI = 1/6, I = 1, . . ., 6. Here, c1, c2, c3, c4, c5 and c6 correspond to domain orientations
with the electrical dipole pointing in the þx01, þx02, þx03, �x01, �x02 and �x03 directions, respectively. When
domains are formed in a single crystal or in a polycrystal, depolarization fields and strain constraints induce
a domain structure in which the net polarization of each crystal is zero showing that there are equal volume
fractions of each domain present. It follows from this point that D = 0 is the starting point for any simu-
lation. A poling electric field is applied in the positive x3-direction up to a magnitude of 2.0 MV/m, and
then reduced to zero again (loading duration 0.1 · 1012 s, see the remark at the end of the last paragraph).
In the beginning, starting at the origin we observe linear dielectric behavior (see Fig. 1). There is no elec-
trically induced strain, since the volume fractions of the domains plotted in Fig. 2 are equal and, thus, the
piezoelectric strain contributions of the domains cancel each other. Furthermore, the volume fractions stay
constant during this period and because of this, there is no change of the remanent strain due to lack of
switching. For applied electric field values slightly beyond 0.8 MV/m we recognize in Fig. 2 a rapid evolu-
tion of the volume fractions c3 and c6. While volume fraction c6 corresponding to the direction opposite to
the electric field vanishes, c3 goes to 1/3. Even though this leads to no change of the remanent strain, a small
amount of strain is induced due to a net piezoelectric effect developing along with the remanent polariza-
tion. Immediately after the vanishing of all domains that were originally oriented opposite to the poling
electric field (c6 = 0), no further evolution of the domain state is observed. However, we see a small strain
increase due to the weak net piezoelectric properties induced so far. At an applied field strength of approx-
imately

ffiffiffi
2

p
Ec ¼ 1:2 MV/m, the critical resolved field strength for 90� switching (c1,c2,c4,c5! c3) is
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Fig. 1. Poling of a single crystal due to an electric field acting in the direction of lattice axis x03. The single crystal initially has equal
volume fractions of each domain. Left: Electric displacement D vs. poling electric field E. Right: Strain e induced by poling.
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Fig. 2. Volume fractions cI during poling in the x03 direction starting with equal volume fractions of each domain. The evolution of c
1,
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reached. Now, we recognize a significant strain increase due to changes of the remanent strain by 90�
switching, returning to linear response once c3 has reached 1 and the other volume fractions have fallen
to zero. The evolution of the volume fractions resembles an ideal plastic type of behavior due to the large
value chosen for the creep exponent n. Simultaneously, the electric displacement and the strain increase very
fast also indicating nearly perfect plastic response. Thus, a fully oriented domain state (c3! 1) is reached
soon after the initiation of switching, and from this point on we have purely linear dielectric and piezoe-
lectric behavior in Fig. 1. In particular, unloading yields only linear response and results in remanent polari-
zation and remanent strain having single domain values. The single crystal reaches these spontaneous unit
cell values, since poling is in the direction of one of the lattice axes.
In the previous example, it is interesting to note that the poling process takes place clearly in two steps.

We find that 90� and 180� switching is initiated at two different values for the applied electric field, in spite
of the fact that the critical resolved electric field strengths for 90� and 180� switching were chosen to be
equal. However, for the considered orientation of the single crystal with the poling field in the direction
of one of the lattice axes, the projection of the applied field on the switching systems sai yields different re-
solved fields for 90� and 180� switching. For a single crystal oriented in such a way, 90� and 180� switching
is initiated at the same applied field strength if we choose G180

�

c ¼ 2G90�c ¼ 1:2� 106 (VC)/m3, as has been
done for the calculations in Figs. 3 and 4. As expected from the choice of the critical driving forces G90

�

c

and G180
�

c , 180� switching (c6! c3) and 90� switching (c1,c2,c4,c5! c3) are initiated at almost the same ap-
plied field strength of

ffiffiffi
2

p
Ec ¼ 1:2 MV/m.

Next, we briefly wish to discuss the influence of the initial domain state on the single crystal response by
considering the electric displacement and electrically induced strain in Fig. 5, where, for convenience, the
initial strain states are taken as the data for zero strain in each case. For these calculations holds
G90

�

c ¼ G180
�

c =
ffiffiffi
2

p
. We compare two extreme initial domain states to the prior case with equal initial volume

fractions denoted by ‘‘111111’’, which was the basis of the previous examples. In this notation, 1 indicates
the presence of a domain in the initial state and 0 indicates its absence. Any domain that is present has an
initial volume fraction equal to that of any other domain that is present. In the first initial state for which
results are shown in Fig. 5, indicated by ‘‘001001’’, all domains are oriented in the direction of the poling
axis. Consequently, there is no initial remanent polarization, and the corresponding strain curve starts hori-
zontally as there is no piezoelectricity due to cancellation of the effects from each domain. At an applied
field strength of 0.8 MV/m, the resolved electric field for the 180� switching system c6! c3 reaches its
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Fig. 3. Poling for critical driving forces G180
�

c ¼ 2G90�c due to an electric field acting in the þx03 direction. The grain initially has equal
volume fractions of each domain. 90� and 180� switching is initiated at the same value of the applied field. Left: Electric displacement.
Right: Electrically induced strain.
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Fig. 4. Volume fractions cI during poling in the x03 direction starting with equal volume fractions of each domain for the case of driving
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critical value of Ec and 180� switching is initiated. Electric displacement and strain follow the first step of
poling in the ‘‘111111’’ curves. In particular, the strain starts to increase due to the piezoelectric effect evolv-
ing together with the remanent polarization. The saturated state with linear piezoelectric behavior shows
the same slope as the ‘‘111111’’ curve, which demonstrates that a fully poled domain state has been at-
tained. This is also confirmed by inspection of the electric displacement which goes to its full saturation
value in one step at 0.8 MV/m. However, since only 180� switching was involved, no change of the rema-
nent strain is possible, and consequently, the strain goes back to zero after unloading. The remaining initial
domain state in Fig. 5, depicted ‘‘110110’’, is somewhat the opposite of the previous one. All domains are
oriented in a plane perpendicular to the poling field in a way that the respective volume fractions for the
�x01 and �x02 axes are equal and, thus, only 90� switching can occur. Again, this means that there is no initial
remanent polarization and piezoelectricity, as in the other two cases. Electric displacement and strain start
to change non-linearly at an applied field of

ffiffiffi
2

p
Ec ¼ 1:2 MV/m, when the critical resolved electric field for
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Fig. 5. Electric displacement and electrically induced strain for poling in the þx03 direction for various initial domain distribution
states. The designations are as follows; ‘‘001001’’: All domains are oriented parallel to the poling axis with equal volume fractions in
the positive and negative x03 directions. ‘‘110110’’: All domains are oriented perpendicular to the poling direction with equal volume
fractions in the positive and negative x01 and x02 directions, respectively. ‘‘111111’’: Equal initial volume fractions of all domains.
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90� switching is reached. Consequently, both curves eventually join the second step of poling in the corre-
sponding plots for the ‘‘111111’’ case. Also, the fully poled state exhibits the same piezoelectric slope as
before and the saturated stage of the electric displacement coincides with the other cases. However, this
time, the change of the remanent strain is larger than in the ‘‘111111’’ case by a factor of 1.5. Now all do-
mains switch by 90� and because of this the reservoir of domains for 90� switching is 50% bigger than for
‘‘111111’’.
As a final example for the single grain behavior, we now consider one poled by an electric field acting in a

direction bisecting the lattice axes þx01 and þx03. Initially each domain is present with an equal volume frac-
tion; i.e. the ‘‘111111’’ case. For these calculations holds G90

�

c ¼ G180
�

c =
ffiffiffi
2

p
. Fig. 6 shows the evolution of the

volume fractions during poling. At a field strength of 0.8 MV/m, we observe the onset of switching of the
domains from the �x01 and �x03 to the þx01 and þx03 directions (c

4,c6! c1,c3). Note that for this 45� orien-
tation with respect to the poling field, the critical resolved electric field strength for 90� and 180� switching is
reached at the same applied electric field strength. Consequently, it cannot be distinguished, if 90� switching
(c4! c3,c6! c1) or 180� switching (c6! c3,c4! c1) takes place. The effect of both processes is the same
resulting in an increase of the remanent polarization, which in turn leads to a period of significant growth of
the electric displacement observed as in Fig. 7. In Fig. 7, we also recognize a simultaneous growth of the
strain, which is exclusively due to the developing piezoelectric effect. A remanent strain cannot develop at
this stage due to symmetry and orientation, neither for the 90� nor for the 180� case. All possible switching
processes show an identical evolution, since the electrical loading is exactly along the 45� line between the
þx01 and þx03 axes, which is a line of symmetry. Soon after initiation of switching, the �x01 and �x03 domains
are extinguished, and a period of purely linear dielectric and piezoelectric behavior follows in the D vs. E
and e vs. E curves, respectively. At a field strength of 1.6 MV/m, reduction of the domains aligned with the
�x02 axes starts. This high value of

ffiffiffi
2

p
�

ffiffiffi
2

p
Ec for the applied electric field is needed because the resolved

electric field on the corresponding switching system is obtained by projecting the applied field twice in two
orthogonal planes by an angle of 45�. By 90� switching, the �x02 domains are distributed in equal parts to
the þx01 and þx03 domains (c

2! c1;c2! c3;c5! c1;c5! c3). Due to the symmetry of the problem, both of
the volume fractions c1 and c3 reach the same saturation value of 0.5. Thus, the resultant remanent polari-
zation observed after saturation and linear dielectric unloading is only 1=

ffiffiffi
2

p
times the spontaneous
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polarization of the unit cell. Out of the original domain distribution, one third remains unchanged, one
third undergoes 90� or 180� switching (c4,c6), and one third experiences 90� switching (c2,c5). Because of
this, the second poling step in the dielectric hysteresis at around 1.5 MV/m has an increment of remanent
polarization that is only half the magnitude of the first step at around 0.8 MV/m. However, the remanent
strain changes only during the final 90� switching process that takes place at around 1.6 MV/m. The in-
crease in strain at around 0.8 MV/m is purely a piezoelectric effect. The amount of domains undergoing
90� switching at around 1.6 MV/m in this case is just half of the amount that occurs in the first example,
where the poling electric field was aligned with the x03 axis. Furthermore, the 90� domain switching is dis-
tributed equally to both the þx01 and þx03 directions. As the result, the remanent strain seen after saturation
and linear piezoelectric unloading in this case is one quarter of the spontaneous strain, and, thus only one
quarter of the values reached in the first example. Due to the 45� orientation of the poled single crystal with
respect to the applied electric field, the slope of the piezoelectric response in Fig. 7 depends on all three of
the single domain piezoelectric coefficients dðIÞ

333; d
ðIÞ
311 and dðIÞ

131.



M. Kamlah et al. / International Journal of Solids and Structures 42 (2005) 2949–2964 2959
3. Polycrystalline response to poling: simulation by the finite element method

The previous section dealt with the response of unconstrained single grains to electric fields. However,
the macroscopic response of the polycrystalline ceramic encountered in technical applications is influenced
by two additional effects. First, due to the orientation distribution of the lattice axes of the grains, the cera-
mic shows an average behavior. Second, grain to grain interaction, including the generations of mechanical
stress due to strain incompatibilities, may constrain or enhance switching of domains. The finite element
method offers a natural method to take into account both effects by considering each element of a finite
element mesh to be a single grain with its own orientation of lattice axes. Grain to grain interaction is then
imposed by solving the finite element equations.

3.1. Finite element formulation for the electromechanical problem

In this paper we employ the finite element formulation of Landis (2002b). Since the paper of Allik and
Hughes (1970) the finite element formulation of electromechanical field problems is usually based on the
physical displacement and the electric potential as nodal quantities. From the energetic point of view, this
formulation exhibits an asymmetry: the physical displacement is the potential for strain, which character-
izes the mechanical state of the material. On the other hand, from the electric potential the electric field is
derived which, thermodynamically, is a conjugate force related to the electric displacement with the latter
quantity determining the electrical state of the material.
In his formulation, Landis (2002b) introduces a vector potential for the electric displacement in order to

replace the electric potential as the basic electrical nodal quantity in the finite element method. In this way,
both the mechanical and the electric nodal quantities are potentials for the parameters (mechanical strain
and electric displacement) that determine the state of the material. The conjugate thermodynamic forces,
mechanical stress and electric field, respectively, are treated in a like manner with their conservation equa-
tions (stress equilibrium and consistency of the electric field with a spatially nonuniform electric potential)
being satisfied in the weak sense of variational methods. Besides this more conceptual point of view, Landis
(2002b) points out the particular advantage of the new formulation that it leads to a positive definite finite
element stiffness matrix in the linear and nonlinear cases, subject to certain physically required constraints
on the material parameters. He demonstrates the impact of this property on the convergence of certain
solution schemes for problems employing non-linear constitutive behavior. Furthermore, it is also an
advantage that nonlinear formulations such as that of Huber et al. (1999) can be implemented easily. How-
ever, our use of a rate dependent scheme obviates this advantage. For further details we refer the reader to
Landis (2002b).
We realize the time integration of the non-linear constitutive model by a simple forward Euler scheme.

The rate dependence of the model due to the form (21) of the evolution equations for the incremental vol-
ume fractions _f

a
is treated in a way common in creep modeling in mechanics: the mechanical and electric

field equations and thus the finite element equations for the nodal quantities are formulated for the time
derivatives. The nonlinear terms stemming from the incremental volume fractions _f

a
then enter as terms

on the right hand side of the finite element equations, see Eqs. (22) and (23).

3.2. A plane strain simulation of the poling process

In order to demonstrate the procedure of simulating the polycrystalline behavior by the finite element
method, we employ a two dimensional finite element model under plane strain constraint. Clearly, this is
a simplification compared with a full three dimensional implementation. We consider a body that is a
square volume with unit thickness and an edge length of 0.1 · 10�3 m consisting of 10 · 10 square finite
elements, i.e. a total of 100 grains, see Fig. 8. Each finite element is a single crystal grain and is assigned
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Fig. 8. Finite element mesh representing a polycrystalline array of 100 grains with random orientation of their lattice axes in the
x1–x3-plane. The volume element is loaded by an electric potential history u(t).
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a random angle between 0� and 90� for the orientation of the lattice axes x01 and x03 with respect to the global
coordinate axes x1 and x3. Results for different orientation distributions of the lattice axes and for a volume
element of 8 · 8 square grains were the same up to a few percent, thus giving us the justification to consider
our volume element representative without being computationally too costly. In view of our two dimen-
sional modeling, the lattice axis x02 is always assumed to coincide with the global out of plane coordinate
axis x2. Each grain initially has equal volume fractions of the 6 tetragonal domains with positive and neg-
ative dipole. The body is fixed such that no rigid body motion is possible, see Fig. 8. In addition, the nodes
on the bottom edge OA are connected electrically to ground, while a triangular shape loading-unloading
history of electric potential is prescribed to the nodes on the edge BC and ranges from zero volts to
�300 V in a time of 2 · 1011 s, see Fig. 8: 0P u(t)P �300 V. The lateral edges AB and OC are subject
to the boundary condition D1 = 0, thereby electrically decoupling the material from the surrounding aether.
This is reasonable since the dielectric permittivity of the material is 3 orders of magnitude greater than air
or a vacuum which can be considered to surround it. The electric displacement in the material is forced by
the planar analysis to lie within the (x1,x3) plane.
The macroscopic response of the body is recorded in terms of macroscopic average quantities. An aver-

age electric field is given by
Eav ¼ �u
h
; ð24Þ
where u is the electric potential prescribed to the top edge and h = 100 lm is the height of the body. The
average electric displacement is defined as
Dav ¼ �Q
h

ð25Þ
with Q being the charge accumulated on BC. The model is assumed to have unit thickness in the x2 direc-
tion, i.e. out of plane. Finally, an average strain is introduced as



F
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eav ¼ u
h
; ð26Þ
where u is the average displacement in the x3 direction of the nodes along BC. Note that nodes O and A are
fixed in the x3 direction.
The response of the polycrystalline array to a poling process in terms of the average quanties introduced

above can be seen in Figs. 9 and 10. As mentioned before, there are two basic effects in the polycrystal.
First, there is an averaging effect over the orientation distribution of the lattice axes of the grains. Second,
due to grain to grain interaction, the local electromechanical fields in the volume element will deviate from
the global external loads.
In order to support the discussion of the averaging effect, Fig. 11 shows the response of two single crys-

tals to poling under plane strain constraint. One grain is poled along one of its lattice axes, say x03, while the
other one is poled along a direction at an angle of 45� with respect to the x01 and x03 axes. In each case, equal
volume fractions of all 6 types of domains are present initially. The resulting curves can be compared to the
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response of the unconstrained grains shown in Figs. 1 and 7, where the same poling directions have been
considered, respectively. It is quite obvious that there are significant differences. Towards the end of the
poling process, the saturation behavior in terms of electric displacement and strain is retarded with respect
to the rate of increase of the electric field. In both cases, the fully poled state is reached following a more or
less straight line with a moderate slope. In this period, the domains oriented initially in the out of plane
directions �x02 are switched by 90� in the direction of poling. However, such switching gives rise to a sig-
nificant remanent contraction strain in x2 direction. This has to be compensated by an elastic strain in this
direction in order to fulfill the plane strain constraint on the total strain. This elastic strain causes a tensile
stress in the x2 direction, which has the tendency to constrain the �x02 domains against switching. As a con-
sequence, further switching is possible only due to a further increase of the poling electric field and thus the
fully poled state is reached gradually with respect to the growing electric field. Unloading after saturation is
linear, indicating that there is no back switching in the single crystal. The fully poled range and, in particu-
lar the remanent quantities obtained after unloading show different values compared to each other and to
the results in Figs. 1 and 7. In the case of the dielectric response this is due to the direct piezoelectric effect
related to the out of plane stress and concerning the strain this is an elastic Poisson strain caused by the
same stress.
We now turn again to the polycrystalline response in Figs. 9 and 10. In the polycrystalline array there is a

random distribution of orientations of the grains between the two extreme cases corresponding to Fig. 11.
Now, comparing Figs. 9 and 10 to Fig. 11, it becomes obvious that the polycrystalline response lies between
the two extreme cases, which demonstrates the averaging effect. In particular, this observation applies to the
onset of switching, i.e. the macroscopic coercive field, which is approximately 0.875 MV/m, intermediate to
the values where switching commences in Fig. 8. At an average electric field of approximately 1.0 MV/m in
Figs. 9 and 10 the poling process slows down relative to the rate of increase of the electric field, as from here
on out of plane switching of the ±x2 domains is initiated. Fig. 10 shows that, however, a large amount of
the macroscopic remanent strain is produced in this stage.
In contrast to the single grain response, a fully poled state is never reached in the polycrystalline case.

This can be seen from the fact that even for Eav = 3.0 MV/m, i.e. at the largest electric field imposed,
the slopes of the loading and unloading branches in Figs. 9 and 10 are different. While further loading be-
yond 3 MV/m would yield continued changes of the macroscopic remanent polarization and strain, the ini-
tial response to unloading is linear and therefore has different slopes. During the application of high field
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and later during unloading, the effect of grain to grain interaction becomes very obvious. Compared to Fig.
11, the average external field in the polycrystalline case is ultimately above the saturation value of approx-
imately 2.7 MV/m observed in the single crystal cases. However, due to the constraints by neighbouring
grains and shielding of the local fields, domain switching is not yet completed in some grains. This effect
also contributes to the progressive change of the slope of the average electric displacement and strain versus
electric field close to saturation. Similarly, if we look closely at the unloading branches, we recognize that
they become slightly non-linear as the electric field is reduced. This phenomenon is not present in the single
crystal cases depicted in Fig. 11. Therefore, we conclude that grain to grain interaction causes reverse elec-
tromechanical fields in some grains, causing some domains to switch back again even before the external
load has been removed completely.
4. Discussion

In the present paper, we compute and discuss in detail the response of a polycrystalline array of ferro-
electric grains to poling by an electric field under plane strain constraint. This two dimensional modeling is
efficient with respect to computation time compared to three dimensional analysis and, of some signifi-
cance, is quite transparent to interpret in terms of the underlying microscopic mechanisms.
On the grain level we have employed a model treating ferroelectric domain switching by methods

established in the context of crystal plasticity (Huber et al., 1999). Grain to grain interaction was taken
into account through a finite element method based on the formulation presented by Landis (2002b).
Each finite element represents a single grain with some arbitrarily prescribed orientation of its lattice
axes.
In a first step we investigate the properties of the single crystal model. Then, the polycrystalline response

of a volume element representing the macroscopic behavior of the piezoceramic is related to these single
crystal properties. This discussion takes into account averaging over the orientation of lattice axes and
grain to grain interaction.
The basic results of our investigation are:

• The response of the polycrystal is dominantly determined by averaging of the single crystal behavior over
the range of orientations of the lattice axes.

• Grain to grain interaction becomes most important towards saturation of the poling process, i.e. when a
fully poled state is approached. Grain to grain interaction is also responsible for a certain non-linearity
of the response during unloading as some reverse domain switching is initiated before the external elec-
tric field is removed completely.

The plane strain constraint has a significant influence on the response of the polycrystal and this effect
has been discussed above. In unpublished research we found that plane strain constraint dominates the
macroscopic response to pure mechanical loading even more strongly, thus limiting the value of publishing
or discussing this case.
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